

Weekly Report Required by Interim Measures Letter dated 8/4/2023

LSB Chemical Company, NPDES Permit Number: AR0000752, AFIN: 70-00040 Weekly Report Date: 14 April 2023, Updated portions are underlined.

Discharges and Implementation of Emergency Action Plan

Over the last week, the facility received a trace of rain. Lake Kildeer is currently at 16.45 feet. We have been discharging up to 2.0 MGD through Outfall 010 in anticipation of incoming rainfall and to maintain levels in Lake Kildeer. On the 17th we closed Outfall 001. Current weather forecast indicated 2.63 inches of rain over the next 10 days. LSB is attempting to keep the levels of Kildeer below 17.00 feet. In the event of additional rain, LSB will manage the discharge from Kildeer as necessary to ensure water does not overtop the emergency spillway in accordance with the August 4, 2023 Interim Measures letter.

Conduct Daily Sampling of Lake Lee, Lake Killdeer, and Pond 004

LSB commenced this required sampling on August 5, 2023.

Provide Copies of Sampling of Lake Lee, Lake Killdeer, and Pond 004 Since January 1, 2023

Please see the LSB Interim Measures response dated August 9, 2023.

Corrective Action Plan Activities [updates from the previous week are underlined]

During our August 17th conference call we discussed that these proposed activities may trigger a communication to the ADEQ and possible permit changes. We will continue to communicate plans and improvements to obtain ADEQ's guidance on proper permitting.

Minimize Wastewater Contaminant Loading

Water Reuse:

LSB has evaluated its processes to assess locations where water can be reutilized in processes. Currently we are reusing as much wastewater as possible, that would otherwise flow into Pond 004, and are reusing some water from Pond 004 when the opportunity arises.

Minimize Wastewater Inflow

The stormwater diversion project has been completed. LSB met with ADEQ on the 19th to discuss permit applicability. Based on the discussions this action will not require a construction permit. Physical work on the project has been completed and we can now divert a total of 30% of the stormwater flow from 004. This is currently a manual process, to automate additional work will be required. Additionally, we have started an engineering study to divert additional water away from the Ammonia Nitrate facility. This project will focus on paving in and around the Ammonia Nitrate area and is upstream of any waste/process water connections and will not require a construction permit. LSB has utilized seven frac tanks to increase the storage capacity of Ammonia Nitrate water to reduce the overflow into Pond 004 from rain events.

Maximize Treatment Efficiency and Capacity

Lake Lee Ammonia Stripper

LSB continues to operate the ammonia stripper with an approximate 20% efficiency.

Treatment of Pond 004

LSB met with Black & Veatch, a wastewater consulting firm, to determine the best treatment possibilities for Pond 004. Based on these initial conversations a biological system seems to be the best path forward. The B&V report was attached in the 13 Oct 2023 report.

Based on review of the Black and Veatch data, LSB is proceeding with biological treatment of 004, but we are still assessing how to address treatment barriers such as predilution, carbon addition, and sludge generation. The design basis is complete. The design basis and preliminary layout is complete. We are currently working on the P&ID's, finalizing all calculations, and developing the plot plan. HGA has been selected to oversee the construction and civil engineering for the facility. We have selected a location and general layout. Once the design basis and P&IDs are finalized, project will be handed off to HGA.

The units are currently on site and are in a staging area. The design basis is completed and the preliminary layout is complete. We are in the process of preparing the permit application for these units. A construction permit will be submitted as soon as P&IDs are prepared.

Black and Veatch is developing the processes to operate the plants and develop a written plan to use these package plants in the setup they are proposing. Once the plans are developed, we can propose permit modification to facilitate this. We are currently developing a list of longer lead time items (i.e. Transformers) to try to find alternative sources of procurement to prevent unforeseen delays. It was expected the transformer would be a potential long lead time element, with the design bases completed. The transformer has been purchased and is being stored offsite until needed.. Ancillary equipment for these units is undergoing inspection and repair as needed.

Additionally, we are evaluating possibilities of reuse of the process wastewater as an input into a product.

Increased Efficiency in Lake Killdeer Biological Activity

Based upon discussion with supplier of nitrification/denitrification bacteria, LSB will begin dosing Lake Killdeer with calcium carbonate or magnesium carbonate to increase the available of carbon and alkalinity in Lake Killdeer. Increasing available carbon should promote additional biological activity to reduce the amount of ammonia in Lake Killdeer and the effluent discharge. LSB has also ordered one ton of lime and will begin dosing Lake Lee with the lime in efforts to increase alkalinity in Lake Lee which flows into Lake Kildeer. Before any dosing begins a construction permit will be submitted.

Baffles in Lake Killdeer

LSB selected a vendor to install baffles in Lake Killdeer. As discussed in our August 17th conference call, this should promote longer residence time and further increase biological activity to reduce the amount of ammonia in Lake Killdeer and the effluent discharge. Baffles have arrived onsite. Construction drawings and design basis have been submitted to apply for the construction permit. The permit application was submitted on the 24th of January. The installation is expected to be completed in the first quarter of 2024 or as soon as approval is received from the ADEQ. ADEQ submitted the public notice on the 28th of February. The 10 day comment period is closed and LSB has submitted proof of publication and payment.

Water Quality Sampling Results

Water quality sampling required by the Interim Measures letter is included in the attached 2023 spreadsheet.

Water Column Profile Measurements

LSB has contracted with Alliance Technology Group (formerly GBMc) to complete the profile and sampling of Pond 004, Lake Lee, and Lake Killdeer. The field work was completed on September 28th.

KT French Drain

KT French Drain is located southwest of the KT plant on the west edge of the facility. Water is collected in a wet well then pumped back into the facility, much like a municipality utilized lift stations. During the previous inspection the pump was not operating and the wet well was overflowing. LSB has implemented daily inspections to ensure that the pump remains operational.

As requested, LSB collected samples from KT Wier. Samples collected on December 8th were collected based on the December 7, 2023 conversation with ADEQ and before we received the official request thus all requested in-situ parameters were not collected. Data is presented below:

Date	Temp	рН	D.O.	Cond.	Ammonia	Nitrate	Nitrite	Total – N	Nitrate +
					mg/l	mg/l	mg/l	mg/l	Nitrite
12-8-2023	NA	4.35	NA	79,150	6,600	10,351	0.43	16,951.4	10,351.4
12-12-	16	4.40	5.63	79,250	6,500	10,633	0.41	16,833.4	10,633.4
2023									
12-14-	18	4.37	5.16	77,440	6,350	10,669	0.46	17,019.46	10,669.46
2023									
12-19-	16	4.35	6.16	78630	12080	11,477	ND	23,557	11,477
2023									
12-21-	18	4.35	5.43	77,750	9200	11,108	ND	20,308	11,108
2023									

Other Actions

In this call LSB was informed we need to obtain a wastewater operator's license as quickly as possible. Charles McDowell passed the advanced industrial wastewater certification on March 26th thru the 28th. LSB currently has three certified operators. Second, ADEQ advised that LSB should coordinate with other Joint Pipeline members regarding discharges and volumes. We have initiated this communication.

LSB has contracted Alliance Technology to conduct a bathometric survey of 004. The results of the study indicate that Pond 004 contains approximately 1.5 Million Gallons of water.

	004 Grab	SO₂ ppm						13																	₽																36	2									
	004 Grab	мда, из						4741																	6041																7275										
	004 Grab	NH _{3.N} , ppm						4720																	6440																11000										
1 004	004 Grab	Conductivity						34410																	47270																54800	2000									
Pon	o Grab	Hd						7.64																	8.05																8 22								I		
	004 004 Grab Grab	Temp DO, ppm	,																																																
	004 Grab	DATE/ TIME						1/10/23																	02/08/23																13/04/23	na leo leo									
	Composite EDCC LAB		216	252	105	108	88	83	91	98	73	96	70.V	106	98	112	100	127	82	79	55	63	7.7	71	130	194	154	109	84	141	101	93	125	121	112	145	151	127	50 6	100	101	131	88	7.7	1100	108	113	100	104	155	174
	Lee Composite EDCC LAB	Phosphorous, ppm	4	0.36			0.76				2.31				5.17				60.6	7.90				1:80				2:08				1.47				1.30			2004	3.04				0.14				0.21			1.64
	Lee Composite EDCC LAB	N0 _{3-N} ,ppm	301	289	272	180	82	103	101	95	72	53	88 83	173	153	128	182	143	134	171	158	158	176	122	120	134	191	158	161	160	97	122	86	126	153	135	107	111	156	151	107	148	148	196	195	137	154	144	106	588	161
	Lee Composite EDCC LAB	NH _{3-N} , ppm	341	265	268	178	73	92	83 88	88 88	65	87	125	225	232	342	312	225	142	158	149	167	154	92	152	135	192	198	255	181	147	128	105	131	122	108	80	105	186	173	139	136	118	225	225	154	132	139	102	57	155
Lake Lee	LEE Grab Sample	DO, ppm																																																	
	Lee Composite EDCC LAB	Hd	3.82	3.11	7.60	7.71	7.70	7.34	7.69	8.02	7.73	8.21	7.94	8.51	8.95	8.81	8.34	8.10	7.78	7.45	7.30	7.38	7.36	7.13	7.52	7.67	7.72	7.80	7.60	7.68	8.53	7.96	7.36	7.21	7.16	7.15	6.68	6.67	6.55	7.24	6.96	7.08	6.92	6.57	7.35	7.31	7.17	7.33	7.30	7.21	7.14
	LEE Grab Sample	J.																																																	
	LEE Grab Sample	Time of Grab																																																	
	Composite	SO₄ ppm	MO?	701	103	103	100		102	100	97		888	94	92	co	70	80	ŏ	ō	9/2	76		73	75	76		78	82	82		85	82	82		83	82	81	20	ō	75	78	ŀ	76	76	79		80	80	82	83
	KD Composite EDCC LAB	P, ppm	Ш	0.10			0.65				0.04				2.28				c c	86.7				0.04				0.02				0.03				0.02			1 67	/0:1				1.79				3.07			1.25
	Composite EDCC LAB	N0 _{3-N} ,ppm	on.	0/	74	75	92		-8	84	68		06	68	06	90	90	87	20	da.	26	100		112	100	66		102	106	107		119	115	116		119	116	94	194	2	146	137		125	133	135		136	136	134	133
	KD Composite EDCC LAB	NH _{3-N} , ppm		40	62	63	99		1	70	09		0/	81	68	6	70	68	F	-	96	66		49	86	94		100	110	106		117	135	118		123	130	101	50	2	152	124		130	127	168		135	131	129	129
ike Killdeer (KD)	Composite EDCC LAB	Conductivity	one,	1073	1095	1114	1127		1154	1162	1185		1183	1202	1245	10340	1240	1250	4000	1200	1280	1308		1416	1294	1315		1311	1340	1342		1446	1438	1440		1464	1460	1463	1046	1040	1874	1672		1534	1595	1599		1608	1598	1595	1593
	KD Grab Sampl	DO, ppm																																																	
	KD Composite EDCC LAB	된	6	69.0	7.10	7.21	7.10		7.11	7.18	7.25		dr./	7.27	7.49	4 04	10.7	7.83	7.40	07:1	7.60	7.52		7.35	7.43	7.46		7.30	7.26	7.39		7.50	7.48	7.47		7.33	7.35	7.26	7 23	00.7	8.23	7.21		7.36	7.56	7.38		7.56	7.24	7.22	7.06
	KD Grab Sample	Je			j																		j																												
	KD Grab Sample	Time of Grab																																																	
		Date	1/1/2023	1/2/2023	1/5/2023	1/6/2023	1/8/2023	1/10/2023	1/11/2023	1/13/2023	1/15/2023	1/17/2023	1/19/2023	1/20/2023	1/22/2023	1/24/2023	1/26/2023	1/27/2023	1/29/2023	1/31/2023	2/1/2023	2/3/2023	2/5/2023	2/6/2023	2/8/2023	2/10/2023	2/11/2023	2/13/2023	2/15/2023	2/16/2023	2/18/2023	2/20/2023	2/22/2023	2/23/2023	2/25/2023	2/27/2023	3/1/2023	3/3/2023	3/5/2023	3/7/2023	3/8/2023	3/10/2023	3/12/2023	3/13/2023	3/15/2023	3/17/2023	3/18/2023	3/20/2023	3/22/2023	3/24/2023	3/26/2023

	004 Grab	SO ₄ ppm				28					20			15														26																42					
	004 Grab	Mqq, _{N-8} 0N r				9206					5032			3691														4463																10832					
	004 Grab	NH _{3-N} , ppm				10060					4400			8240														2080																10600					
ond 004	004 Grab	Conductivity				70340					39320			57620	000													34840																79560					
	3rab 004 Grab	Hd wdd				8.33					8.61			7.68	3													8.71																7.42					
	004 Grab 004 Grab	Temp DO, ppm																																												H			
	004 Grab	DATE/TIME				04/04/23					04/12/23			04/18/23	CT for to													05/10/23																06/07/23					
	Lee Composite FDCCLAB		178	123	93	115	122	97	26	154	149	231	171	205	233	198	202	187	191	219	162	174	189	191	209	210	122	82	90	171	192	171	176	171	194	206	672	432	332	283	234	199	205	205	259	146	197	140	148
	Composite EDCC C					1.01			1.24	1.50				1.28				02.0	2.10				2.02				1.50				2.96				2.72				1.12				0.65			H	0.22		
							m -				~ ~																			10.		n 10																	_
	Se Lee Sosite Composite	_		26 129 7 103			1					3 81		2 82			5 87	31 190	75 177		140 154				4 51			15 36:	18 245	13 23.1	38 156		75	2 65		3 100		0 48	53 32	20	10	00	10	100	33	15	9 42	7 42	120
Lake Lee	E Composite		15	12.8	ài a	141	16	27	164	13	8 22	63	38	72	18	- 1	12/	31 6	175	109	14	1 19	2 5	98	v 14	7	180 1	335	32	21	12	≥ éo è	6 8	11 5	182	7.	888	31	16	12.13	7	4 19		- 00	2016		3(2	÷
	te Grab Sample	+																																															
	Composite	+	7.13	7.18	7.30	7.10	7.54	6.78	9.95	7.02	6.58	5.86	6.56	5.56	6.94	6.89	5.21	5.42	6.89	6.95	5.71	7.63	5.50	7.03	6.73	8.07	8.19	7.55	7.02	7.19	7.71	7.36	7.21	6.68	6.78	6.72	3.80	3.17	3.14	4.88	7.24	7.25	7.38	7.25	7.49	7.46	6.70	6.53	6.38
	LEE Grab Sample	Temp																																															
	LEE Grab Sample	Time of Grab																																															
	KD Composite FDCCLAR	+	83	85		83	83	72	7.0	7/	74	75	l	91	83	V-0	ž	98	8	88	88		92	93	94		98	92	68		98	98	85		98	87	111	Ì	114	121	126	\dagger	135	139	141		142		145
	Composite EDCC C	P, ppm				0.04			00.00	000				1.42				1 44	+				1.46				1.24				1.61				1.79				0.32				1.64				1.31		
	Composite Compo	N0 _{3-N} .ppm P	134	136			167	166	188	20	162	146		140	141	137	13/	133	00	137	135		139	140	138		139	132	161		156	158	160			153	149		146	146	147		137	135	132		126		125
	Composite Con	+	130	119			+	159	169			132	+		131	1		130		121	112		112	122	120		123	120	138		142	138	145			117	135		122	119	120		122	116	114		116		
	Composite Con		1620	1622		_		1806	2042			1675	+		1615	1		1565		1582	1570		1611	1633	1628		1613	1588	1841		1805	1812	1825			1758	1760		1740	1734	1721		1680	1674	1655	H	1624		0661
Lake Killdeer (KD			16	16		4	**	18	30	4	#	16		4	16	4	-	4	-	16	15		16	16	16		16	15	18		16	18	18		10	17	17		47	17	17	1	16	16	18		16		2
	SC Grab Sample																																																
	KD Composite EDCC	H	7.12	6.98		7.16	7.04	6.87	7.04	10.	2:00	06.9		7.18	6.75	68	0.52	7.03	00.7	7.02	6.93		6.87	6.82	6.85		6.88	6.65	6.81		6.80	98.9	7.03		6.97	7.10	6.73		6.18	6.59	6.73		6.68	90:9	6.22		6.44	i.	6.55
											l																								l														
	KD Srab Sam	Temp			- 1	-11		11	\perp	Ш	+	Ш	+	+	H	4	+	H	H		H	ł	H	H	+	\dagger		H	+	+	H	\parallel	\parallel	+		H	H	+	H	H			H	+	H	H	\mathbb{H}	+	
	KD KD Grab Sample																																																

Γ	004 Grab	SO₂ ppm	П		1		1	T	T	T	T	T	I	T											2	1	1	T	1	T	I		П	1	T	T	T				П		4	ي	4	20	2	y 0"	7
	ab 004 Grab	mdd, _{N-8} N md																							2989																					6657	+	+	
	004 Grab	ty NH _{3-N} , ppm																							4320																		5840	5280	6200	6200	4260	3660	
Pond 004	004 Grab	Conductivity																							24910																					49870	1	1	_
	3rab 004 Grab	Hd wdo																							9.02																-					2 6.95	t	t	1
	004 Grab 004 Grab	Temp DO, ppm																																												27 6.02	+	+	-
	004 Grab	DATE/ TIME																							07/14/23																			20am	0AM	10:09AM	OAM	SAM	100
											l	l	1												1					1	<u> </u>					1											1	1	1
	C Composite EDCC LAB	m SO₂ ppm	201	322	287	200	66.	25 5	180	2	140	107	167	149	158	152	172	161	186	195	155	125	73	75	36	109	OLL.	124	777	011	123	113	121	133	146	104	121	107	121	119	126	122	113	143	147	125	710	: 08	2
	Lee Composite EDCC LAB	Phosphorous, ppm					20.7	1.2.1						2.21							3.83							4.11						2.89						1.34					1.22				
	Lee Composite EDCC LAB	N0 _{3-N} ,ppm	153	130	116	94	60	56	130	707	5 5	\$ 6	470	86	67	116	509	223	130	126	231	196	99	215	119	323	270	229	691	143	129	93	82	06	79	7/	42	30	24	20	75	51	32	22	17	15	14	102	
	Lee Composite EDCC LAB	NH _{3-N} , ppm	141	123	101	78	66	49	105	190	192	132	27.	72	51	102	188	186	134	132	509	157	52	136	281	278	231	222	191	133	120	92	98	98	72	000	38	16	10	13	64	38	16	6	9	9 1	, 04	102	10.
Lake Lee	LEE Grab Sample	DO, ppm																																											6.03	6.12	60.0	7.86	20.1
	Lee Composite EDCC LAB	Hd	7.31	6.86	7.17	6.84	7.14	6.72	7.02	100	70.7	1.87	7.59	57:0	2.06	6.82	96'9	7.62	7.66	8.21	8.16	7.88	5.74	8.49	8.22	8.29	8.50	9.32	8.03	8 17	8.05	7.49	98'9	69''	7.38	7.43	8 14	8.27	66.9	7.19	6.92	7.09	8.10	7.44	09'9	6.45	5.48	7.26	1
	LEE Grab Sample	Temp °C																																											26	25	726	24	
	LEE Grab Sample	Time of Grab																																											6:00AM	6:00AM	7:00AM	7-00AM	500
	KD Composite EDCC LAB	SO₄ ppm	138		141			143	440	74	444	4		144		142		140			140		139		34			112		104	108			110		2	110			110		111		111		0.00	113	128	777
	KD Composite EDCC LAB	P, ppm					00,	1.32						1.38							5.24							6.08						2.03						1.96						34.4	1.75		_
	KD Composite EDCC LAB	M03-N ,ppm	131		133		00,	130	107	171	400	22		137		133		132			136		113		69			153	077	143	141			136		ŧ,	133	-		129		128		126	125	123	124	120	- 1
	KD Composite EDCC LAB	NH _{3-N} , ppm	115		115		4	119	100	771	440	611		120		125		116			130		102		179			151	4.0	143	140			125	000	071	120	24		128		114		119	114	105	110	114	
Lake Killdeer (KD)	KD Composite EDCC LAB	Conductivity	1688		1705		0000	1690	1879	7/01	4700	07/1		1730		1724		1720			1780		1782		2240			1890	0000	1820	1804			1763	1000	1/04	1753	8		1745		1726		1710	1703	1676	1683	1584	
Lake	KD Grab Sample	DO, ppm											İ																	İ															7.65	8.27	6.45	7.34	
	KD Composite EDCC LAB	Hd	09:9		99.9		000	69.9	8.75	0.70	****	40.0		69.9		6.77		6.74			6.75		6.64		7.50			6.98		6.95	6.91			6.90	100	0.03	6.84			6.83		6.77		6.79	6.79	6.77	6.80	7 11	
	KD Grab Sample	Temp									1	1	l																	l											H				28	58	97	7.6	-
	KD Grab Sample	Time of Grab								l	1	1	Ì																	Ì											Ħ				8:53AM	9:57AM	8:25AM	8-13AM	
		Date	6/21/2023	6/22/2023	6/23/2023	6/24/2023	6/25/2023	6/26/2023	6/21/2023	01201000	0/29/2023	20/20/2023	7/2/2023	7/3/2023	7/4/2023	7/5/2023	7/6/2023	7/7/2023	7/8/2023	7/9/2023	7/10/2023	7/11/2023	7/12/2023	7/13/2023	7/14/2023	7/15/2023	//16/2023	7/17/2023	7/18/2023	7/20/2023	7/21/2023	7/22/2023	7/23/2023	7/24/2023	7/25/2023	7/27/2023	7/28/2023	7/29/2023	7/30/2023	7/31/2023	8/1/2023	8/2/2023	8/3/2023	8/4/2023	8/5/2023	8/6/2023	8///2023	8/9/2023	1000